1341t+8.2t^2=40000

Simple and best practice solution for 1341t+8.2t^2=40000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1341t+8.2t^2=40000 equation:


Simplifying
1341t + 8.2t2 = 40000

Solving
1341t + 8.2t2 = 40000

Solving for variable 't'.

Reorder the terms:
-40000 + 1341t + 8.2t2 = 40000 + -40000

Combine like terms: 40000 + -40000 = 0
-40000 + 1341t + 8.2t2 = 0

Begin completing the square.  Divide all terms by
8.2 the coefficient of the squared term: 

Divide each side by '8.2'.
-4878.04878 + 163.5365854t + t2 = 0

Move the constant term to the right:

Add '4878.04878' to each side of the equation.
-4878.04878 + 163.5365854t + 4878.04878 + t2 = 0 + 4878.04878

Reorder the terms:
-4878.04878 + 4878.04878 + 163.5365854t + t2 = 0 + 4878.04878

Combine like terms: -4878.04878 + 4878.04878 = 0.00000
0.00000 + 163.5365854t + t2 = 0 + 4878.04878
163.5365854t + t2 = 0 + 4878.04878

Combine like terms: 0 + 4878.04878 = 4878.04878
163.5365854t + t2 = 4878.04878

The t term is 163.5365854t.  Take half its coefficient (81.7682927).
Square it (6686.053691) and add it to both sides.

Add '6686.053691' to each side of the equation.
163.5365854t + 6686.053691 + t2 = 4878.04878 + 6686.053691

Reorder the terms:
6686.053691 + 163.5365854t + t2 = 4878.04878 + 6686.053691

Combine like terms: 4878.04878 + 6686.053691 = 11564.102471
6686.053691 + 163.5365854t + t2 = 11564.102471

Factor a perfect square on the left side:
(t + 81.7682927)(t + 81.7682927) = 11564.102471

Calculate the square root of the right side: 107.536516919

Break this problem into two subproblems by setting 
(t + 81.7682927) equal to 107.536516919 and -107.536516919.

Subproblem 1

t + 81.7682927 = 107.536516919 Simplifying t + 81.7682927 = 107.536516919 Reorder the terms: 81.7682927 + t = 107.536516919 Solving 81.7682927 + t = 107.536516919 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-81.7682927' to each side of the equation. 81.7682927 + -81.7682927 + t = 107.536516919 + -81.7682927 Combine like terms: 81.7682927 + -81.7682927 = 0.0000000 0.0000000 + t = 107.536516919 + -81.7682927 t = 107.536516919 + -81.7682927 Combine like terms: 107.536516919 + -81.7682927 = 25.768224219 t = 25.768224219 Simplifying t = 25.768224219

Subproblem 2

t + 81.7682927 = -107.536516919 Simplifying t + 81.7682927 = -107.536516919 Reorder the terms: 81.7682927 + t = -107.536516919 Solving 81.7682927 + t = -107.536516919 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-81.7682927' to each side of the equation. 81.7682927 + -81.7682927 + t = -107.536516919 + -81.7682927 Combine like terms: 81.7682927 + -81.7682927 = 0.0000000 0.0000000 + t = -107.536516919 + -81.7682927 t = -107.536516919 + -81.7682927 Combine like terms: -107.536516919 + -81.7682927 = -189.304809619 t = -189.304809619 Simplifying t = -189.304809619

Solution

The solution to the problem is based on the solutions from the subproblems. t = {25.768224219, -189.304809619}

See similar equations:

| -1(5x+13)=27x-13 | | -2x+3x-6x=0 | | 4(1+8)-4=34-2 | | .522-.424x=2x | | R^2+17=0 | | 2x+1=69 | | 3(2x-5)=5x+11 | | 14=27-c | | r^2+18r+31=0 | | 11y-16y=10 | | 3x+2(2x-1)=5(x+4) | | 8p+12p=80 | | 4y^2+64y-116=0 | | -4x^2+550x+8500=0 | | 4(6x-5)-9=24x-29 | | 6m+18=42 | | z^2-4z-23=0 | | 4x+8=2x-22 | | 7z=1055 | | 3r=-150 | | 1+2m=8 | | 7t=-126 | | s^2+28s=15 | | 2x+160450=311950 | | 2x+160450=411 | | 14(z+2)-3(z-2)=5(z-1)+5(z-2) | | 2p^2+28p=-26 | | x+26=5x+34 | | 49x^2+9x-468=0 | | 6.33*x=0.60 | | X+(x+160450)=311950 | | x-18y=-40 |

Equations solver categories